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Abstract 

It is well known that exact averaging of the equations of flow and transport in random 
porous media presently realized only for a small number of special, occasionally exotic, 
fields. On the other hand, the properties of approximate averaging methods are not yet 
fully understood. For example, the convergence behavior and the accuracy of truncated 
perturbation series are not well known. Furthermore, the calculation of the high-order 
perturbations is very complicated. These problems for a long time have stimulated 
attempts to find the answer for the question: Are there in existence some exact general 
and sufficiently universal forms of averaged equations? If the answer is positive, there 
arises the problem of the construction of these equations and analyzing them. There exist 
many publications related to these problems and oriented on different applications: 
hydrodynamics, flow and transport in porous media, theory of elasticity, acoustic and 
electromagnetic waves in random fields, etc. We present a method of finding some 
general form of exactly averaged equations for flow and transport in random fields by 
using (1) an assumption of the existence of Green’s functions for appropriate stochastic 
problems, (2) some general properties of the Green’s functions, and (3) the some basic 
information about the random fields of the conductivity, porosity and flow velocity. We 
present some general forms of the exactly averaged non-local equations for the following 
cases. 1. Steady-state flow with sources in porous media with random conductivity. 2. 
Transient flow with sources in compressible media with random conductivity and 
porosity. 3. Non-reactive solute transport in random porous media. We discuss the 
problem of uniqueness and the properties of the non-local averaged equations, for the 
cases with some types of symmetry (isotropic, transversal isotropic, orthotropic) and we 
analyze the structure of non-local equations in a general case of stochastically 
homogeneous fields. 

1. INTRODUCTION 

Recently the methods of analysis for the flow and transport in random media are 
finding ever-widening applications in science and technology involving various physical 
processes. It is possible to select an investigation strategy from the following three 
approaches.                                                                                                                    
Exact analytical approach: It is well known that the exact analytical averaging of the 
equations of flow and transport in random porous media turn out well be realized only for 
a small number of special, occasionally exotic, fields 
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Numerical approach: Numerically solve appropriate equations for representative sets of 
realizations of random fields. This approach is one sometimes called the Monte Carlo 
technique. The information obtained in this way makes it possible to find the highest 
moments together with computing the local and mean fields of pressure, velocity, etc. 
However, the exceptionally large volume of calculation and the difficulty for generalizing 
the results and finding the relations between the known and the unknown functionals 
restrict the significance of this approach for our goal. 

Use of a perturbation technique: Every so often one can use the series expansion of 
small parameters, which specifies the deviation of some fields from their mean values. 
This approach usually utilizes analytical techniques. Although it is possible to find many 
results, it should be pointed out that it involves significant difficulties. Even in a problem 
of a comparatively simple structure one can usually find only the first few terms of 
expansions, because the analytical difficulties grow very quickly with the number of 
terms. Moreover, the convergence of the expansion is not studied. One approach utilizes 
the distinctive space scale for fast oscillating fields as a small parameter. This approach, 
so-called “homogenization”, was largely developed for investigating processes with 
periodical structures. Many rigorous results were obtained that justify the method, 
although the computation of the results is highly laborious. For random structures, which 
is the focus of the present paper, some results have been obtained but the constructive 
theory is still absent. 

Generally speaking, direct averaging and defining the functionals and the relations 
between them are exceptionally complicated. However, the fundamental information 
contained in the local equations and their structure has not been sufficiently utilized. 
Later we will show that investigation in this direction leads to, for example, finding the 
forms for the relations between average fields. We show that this is possible in some 
cases without actually solving appropriate equations but by presupposing only the 
existence of the solutions and using their general properties. 

The following question has for a long time stimulated attempts to find the answer: Are 
there in existence some exact general and sufficiently universal forms of averaged 
equations for transport of mass, moment, energy, etc? If the answer is positive, then there 
arises a quest to construct the equations and to analyze them. 

Many publications can be found related to this subject that discuss various applications. 
They include hydrodynamics, flow and transport in porous media, theory of elasticity, 
acoustic and electromagnetic waves in random fields (ex.: Batchelor,1953; Monin and 
Yaglom, 1965, 1967; Tatarsky, 1967; Saffman, 1971; Klyatskin, 1975 ,1980; Shermergor 
, 1979; Shvidler, 1985;Dagan, 1989; Bakhvalov and Panasenko, 1989; Zhikov et all, 
1993; Neuman and Orr , 1993; Indelman and  Abramovich, 1994; Indelman, 1996; 
Teodorovich, 1997; Shvidler and Karasaki, 1999). 

We present a method of finding the general form of exactly averaged equations by 
using (1) an assumption of the existence of random Green’s functions for appropriate 
stochastic problems, (2) some general properties of the Green`s functions, and (3) the 
information about the random fields of the conductivity, porosity and flow velocity. We 
present a general form of the exactly averaged non-local equations for the following 
cases: 1. Steady-state flow with sources in porous media with random conductivity, 2. 
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Transient flow with sources in compressible media with random conductivity and 
porosity, and 3. Non-reactive solute transport in random porous media. In this paper we 
discuss the properties of the non-local averaged equations. The case 1 is presented in 
detail and for other cases we present only the basic results. 

We discuss the problem of uniqueness and the properties of the non-local averaged 
equations for the cases with some type of symmetry (isotropic, transversally isotropic and 
orthotropic). We also present and analyze the non-local equations in a general case of 
stochastically homogeneous fields. 

2. STEADY-STATE FLOW WITH SOURCES 

We consider the steady flow with sources in a heterogeneous porous unbounded domain. 
The condition of continuity is given by the equation: 

( ) ( )l

l

v
f

x

∂
=

∂
x

x  (1) 

Here 1 2 3( , , )x x x=x  is a 3-dimensional vector with components lx ( )1, 2,3l = , the 

function ( )f x  is the density of sources and we assume that it is a locally integrable 

function, and ( )v x  is the Darcy‘s velocity vector. 

The velocity and pressure (or hydraulic head) ( )u x  obey the Darcy‘s Law  

( ) ( ) ( )u= − ∇v x � �  (2) 

We assume that ( ) ( ){ }lmσ=� �  is the second rank conductivity tensor symmetric by 

subscripts and is a positive definite and local tensor, i.e., for any x and vector , the 

elliptic condition ( ) 2
, ( 0)m lm lξ σ ξ θ θ≥ >x  is satisfied. 

In this case the unique and positive defined tensor ( ) ( )1−=r x �  exist and we can write 

the conservative form of  Darcy‘s Law as condition for momentum balance 

( ) ( ) ( )u= −∇r x v x x                                                                                                        (3)         

It is evidently from equations (2) and (3) that the fields ( )v x  and ( )u∇ x  are one-to-one. 

For the pressure or head ( )u x  we assume the condition: 

( ) 0 foru = → ∞x x                                                                                                        (4) 

3. STOCHASTIC FORMULATION 

We assume that the tensor ( )�  is a stochastically homogeneous random field. That is, 

for any vector x and for an arbitrary vector h, all the finite-dimensional probability 
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distributions for the random field ( )+� �  doesn’t depend on the arbitrary vector h. Let 

( )f x  be a non-random source density function. We introduce the random Green’s 

function ( ),g x y  for the problem described (1), (2) and (4), so that for almost all 

realizations of field ( )�  the function ( ),g x y  satisfies the following equations: 

( ) ( ) ( ),
lm

l m

g

x x
σ δ

∂ ∂ = − − ∂ ∂ 

x y
x x y                                                                                    (5) 

( ), 0 forg = → ∞x y x   (6)   

In the general case we can now write the solution for the problem (1), (2) and (4): 

( ) ( ) ( ) 3,u g f dy= ∫x x y y  (7)   

where 321
3 ydydydyd =  and the integration is over the entire unbounded 3-D space.  

We introduce the averaged fields over the ensemble of realizations of the random 
function ( )� : 

( ) ( ) ( ) ( ) ( ) ( ), , , ,U u G g= = =x x V x v x x y x y   (8)  

As long as ( )�  is a stochastically homogeneous field, the mean Green’s function 

( ),G x y  is invariant over translation in space, and therefore, depends only on the 

difference −x y . Hence, after averaging the equation (7) over the ensemble, we have: 

( ) ( ) ( ) 3U G f dy= −∫x x y y   (9)  

Then we can write the averaged equation over the ensembles of equation (1): 

( ) ( )l

l

V
f

x

∂
=

∂
x

x   (10)  

After averaging the equation (2), we have: 

( ) ( ) ( ) 3
l lV f dy= Γ −∫x x y y   (11)  

where 

( ) ( ) ( ),
l lj

j

g

x
σ

∂
Γ − = −

∂
x y

x y x    (12)  

We shall call the vector ( )−� �  the mean Green’s velocity. By substituting (11) into 

equation (10) we find the relation of compatibility for the components ( )lΓ −x y : 

( ) ( )l

lx
δ

∂Γ −
= −

∂
x y

x y   (13)  
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Therefore, the mean pressure ( )U x  and the mean velocity ( )lV x  are convolution 

integrals of the source density ( )f x  and the mean Green’s function ( )G −x y  and the 

vector-function ( )−� � , respectively. 

The equations (9), (10) and (11) make up the closed system of equations for the 
averaged fields ( )U x  and ( )V x . This system contains the kernels, ( )G −x y  and 

( )−� �  that are non-random functional from the random conductivity field ( )�  and 

the random Green’s function ( ),g x y . Of course, the explicit definitions of the 

functionals G  and  are very difficult to obtain in the general case (for any random field 

( )� ). For now the existence of these functionals in itself is significant. There is a 

possibility to determine some of their features that help find a general form of the 

 averaged equations, of which the equations (9), (10) and (11) are a part of. Later we 

will find them in different forms. 

4. FOURIER ANALYSIS 

We consider the Fourier transform FT  and inverse Fourier transform 1
FT − for 

analyzing the equations with convolutions in all space. 

( ) ( ) ( ) ( ) 3exp 2FT j dxϕ ϕ π ϕ= = − ⋅      ∫x k x k x   (14)  

( ) ( ) ( ) ( )1 3exp 2FT j dkϕ ϕ π ϕ− = = ⋅      ∫k x k x k   (15)     

where 1j = − . 

Applying FT  to equations (9), (10), (11) and (13) we have the linear algebraic 
equations in k-space: 

( ) ( ) ( )U G f=k k k   (16)  

( ) ( )2 l ljk V fπ =k k   (17)  

( ) ( ) ( )l lV f= Γk k k   (18)  

( )2 1l ljkπ Γ =k                                                                                                                (19) 

The equations (16)-(18) are a closed system with respect to functions ( )U k  and ( )lV k .         

After eliminating ( )f k  from the equations (16) and (18) we find the equation that bind 

the scalar field ( )U k  and the vector field ( )V k :   

( ) ( ) ( )l lV U= Πk k k                                                                                                     (20)                            

( ) ( ) ( ) 1

l l G
−

 Π = Γ  k k k  (21)  
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From (18) and (21) we obtain the condition of compatibility for the components vector 
( )Π k : 

( ) ( ) 1
2 l lik Gπ

−
 Π =  k k  (22)   

The scalar function ( ) ( )G G− = −x y y x  and the vector-function ( ) ( )− = − −� � � �  

and their Fourier transformations ( )G k  and ( )Γ k  are real-even and imaginary-odd 

functions of k, respectively. 

The equations (16) and (20) are also a closed system with respect to functions ( )U k  and 

( )lV k . By applying the 1−
FT  transform to (20), we can write the convolution equation: 

( ) ( ) ( ) 3
l lV U dy= − Π −∫x x y y  (23)  

Thus the equation (23) connect ( )V x , the mean velocity at point x, and the distribution 

of ( )U y  in all space with the help of the vector-operator ( )−� � : 

( ) ( ) ( ) 3
l l Q dyΠ = Γ −∫x x y y   , ( ) ( ){ }11

FQ G
−−= Τ   x k  (24)  

The function ( )Q x  is an even and real. It is obvious that scalar-operator ( )lΠ x  is an odd 

and real. Obviously, the kernel-vector ( )�  is a non-random mapping for the random 

field ( )�  and does not depend on the source density, ( )f x . If the vector field of the 

mean velocity ( )V x  and the scalar field ( )U x  describe one averaged flow process in 

one unbounded stochastic homogeneous system, the kernel-vector ( )−� �  is the 

unique operator that realizes (describes) in x-space the linear relation between them in 
the form of (23). In k-space it becomes the vector-function ( )� .  

It easy to see that the exact averaged equation (20) is reversible. If we know the scalar  

field ( )U k , from (20) we can directly define the vector field ( )V k  and vice versa. If we 

know the field ( )lV k , we can write ( ) ( ) ( )/l lU V= Πk k k  for any l using (20).  Note that 

in the singular case of non-random conductivity ( )lm lmσ σδ=x , where constσ = , lmδ  is 

the Kronecker symbol, the ( )G k and ( )lΓ k , the vector ( )lΠ k and kernel-vector 

( )lΠ −x y  are: 

( ) ( ) ( )12 2 24 , / 2l lG k jk kσπ σ π
−

= Γ = −k k ,  (25)   

( ) ( ) ( )
2 ,l l l

l

jk
x

δ
πσ σ

∂ −
Π = − Π − = −

∂
x y

k x y   (26) 



 7

It is interesting to compare the approaches for solving the direct and inverse 
problems when we use the local description of flow introduced with the system of 
equations (1)-(4) and the averaged description presented above with the system of 
equations (16)-(19) or (20)-(22). 

It is evident that when we know the non-random density-function ( )f x  and a second 

rank random tensor-function ( )� , we can find a unique scalar field ( )u x  and vector-

field ( )v x  for almost all realizations. The inverse problem of finding the density- 

function ( )f x  and the tensor ( )�  is more complicated and requires a special approach. 

If we know some velocity-field ( )1v x , we can compute the function ( )1f x  from the 

equation (1). The tensor ( )�  is symmetric and we have nine unknown components in 

three-dimensional space and three conditions of symmetry ( ) ( )lm mlσ σ=x x . Both fields 

( )1u x  and ( )1v x  depend on the same density- function ( )1f x , which makes it possible 

to use the Darcy‘s  Law in (2) to obtain a system of three scalar linear equations. Each of 
them contains three unknown components. Thus we have an underdetermined system of 
6 linrar algebraic equations with nine unknown components. Obviously that if we use two 
linearly independent pairs, ( ) ( ){ }1 1,u x v x  and ( ) ( ){ }2 2,u x v x , we can add to the system 

three independent equations, that are Darcy‘s Law for the second pair of fields. In this 
case we have a closed system of nine equations for nine components. Since the local 
fields ( )iu x  and ( )iv x  depend on the density-function ( )if x  in all x-space, in order for 

the pairs ( ) ( ){ },i iu x v x  to be linearly independent, the functions ( )if x  must be linearly 

independent. 

When analyzing the averaged description, the direct problem is to define the fields 
( )U k  and ( )V k  under a known scalar function ( )f k  and a vector-function ( )� . It 

is evident that we can find from equation (22) the function ( )G k  and then find the field 

( )U k from equation (16). At last we find the field ( )V k from equation (20). Thus the 

direct problem is fully defined. Remember that to fully define the direct local problem we 
need to use the scalar function ( )f x  and the tensor-function ( )lmσ x . 

The inverse problem under the averaged descriptions is to define the scalar function 
( )f k  and vector-function ( )� . It is evident that if we know the scalar-field ( )U k  and 

the vector-field ( )V k , the appropriate function ( )f k  can be found from the equation 

(17) and vector ( )�  from equation (20). Note that if we only know the vector-field 

( )V k , we can find the function ( )f k  only. If in addition we know the scalar-function 

( )G k , we can find the field ( )U k  from equation (16) after computing ( )f k . 
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It is easy to see that if we only know the fields ( )U k  and ( )G k , we can find the 

function ( )f k  only. Thus, in contrary to a local model, the inverse problem is full 

defined if we know one pair of fields ( ) ( ){ },U k V k . 

Notice that the equations for an averaged steady-state flow connect non-random 
functionals of random fields and thus are not as much detailed as the local models. 
Similar to any variant of upscaling we lose some information about flow, but in return, 
we have simpler tools to study the important property of the process. As we show here, 
instead of the second rank tensor ( )� -the random media characteristic in local model, it 

is sufficient to use the first rank tensor, i.e., the vector - ( )�  for the description the 

averaged model.  

5. GLOBAL SYMMETRY 

We continue the analysis of the averaged equations and assume that the random field 
( )�  satisfies some symmetry conditions that are related to the structural properties of 

the field as a whole. We shall call this type of symmetry global.  

ISOTROPY: Let the random conductivity tensor ( )�  be an isotropic field. In this case 

the imaginary vector ( )�  in any orthogonal coordinate system is proportional to the 

vector 2 jπ k . It is invariant for any rotation and reflection on the coordinate planes 

0lk =  and the proportional coefficient depends on k  only. We can write 

( ) ( ) ( ) ( )2ii
l ll jkπ∗Π = −Πk k   (27)  

where ( ) ( )i
l∗Π k  is a scalar and positive even function, such that ( ) ( ) ( ) ( )

1 2 3
i i i i

∗ ∗ ∗ ∗Π = Π = Π = Π . 

Then 

( ) ( ) ( ) ( )2i
l lm mV jk Uπ= −Βk k k   , ( ) ( ) ( ) ( )i i

lm lmδ∗Β = Πk k   (28)  

and therefore, in x-space we have the relations: 

( ) ( ) ( ) ( ) 3i
l lm

m

U
V dy

y

∂
= − Β −

∂∫
y

x x y   ,  ( ) ( ) ( ) ( ) 3i
l

l

U
V dy

y∗

∂
= − Π −

∂∫
y

x x y   (29)  

Here ( ) ( )iB x  is unique spherical tensor and ( ) ( )i
∗Π x is unique scalar function. 

It is evident that the equation (29) is revesible and we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 ,i i i
ml l m ml mlR V jk U Rπ δ∗

 = − = Π k k k k k   (30)      

In x - space we have the non-local with unique kernel averaged condition of the 
momentum balance 
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( ) ( ) ( ) ( )3i
ml l

m

U
R V dy

x

∂
− = −

∂∫
x

x y y    (31)  

Here the isotropic resistance tensor is ( ) ( )1
FT −  =  R x R k . 

ORTHOTROPY: If the field ( )�  is orthotropic then there exists some orthogonal 

coordinate system such all the stochastic multipoint moments of the random field are 
invariant to the reflection in the planes 0lk = . In this case the components ( )lΠ k  can be 

written as 

( ) ( ) ( ) ( )2o o
l l ljkπ∗Π = −Πk k   (32)  

where summation over l is not implied. 

The functions ( ) ( )o
l∗Π k  are positive and even of k, which depends on 1 2 3, ,k k k . In an 

orthotropic system the averaged equations are in the forms: 

( ) ( ) ( ) ( )2o
l l lV jk Uπ∗= −Πk k k   (33)  

(no summation over l!) 

( ) ( ) ( ) ( )2o
l ml mV jk Uπ= −Βk k k   (34)  

were the components tensor ( ) ( )o �  takes the form: 

( ) ( ) ( ) ( )o o
ml ml mδ ∗Β = Πk k   (35)  

(no summation over m!) 

which means that the tensor ( )o  is diagonal. 

In x -space in corresponding coordinate system we have non-local equations with unigue 
kernels 

( ) ( ) ( ) ( ) 3o
l l

l

U
V dy

y∗

∂
= − Π −

∂∫
y

x x y  , ( ) ( ) ( ) ( ) 3o
l lm

m

U
V B dy

y

∂
= − −

∂∫
y

x x y    (36)           

Evidently the equation (35) is reversible and the averaged equation has the form: 

( ) ( ) ( ) ( )2o
ml l mR V k Uπ= −k k k   (37)  

where ( ) ( ) ( ) ( )
1

o o
−

 =  R k �  is the diagonal orthotropic tensor of resistance. 

In x -space in corresponding coordinate system we have non-local with unique kernel 
averaged condition of the momentum balance 

( ) ( ) ( ) ( )3o
ml l

m

U
R V dy

x

∂
− = −

∂∫
x

x y y     (38)      
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TRANSVERSAL ISOTROPY: In the case of transversal isotropy, it are invariants 
relative to the rotation around one axes of coordinate system, for example, 3k , and 

reflection on any plates 0lk = , we have ( ) ( ) ( )
1 2 3
t t t

∗ ∗ ∗Π = Π ≠ Π , where the scalar functions 
( ) ( )t

l∗Π k  stays invariant over rotation and reflections. In this case of symmetry, 

( ) ( ) ( ) ( )2t t
l l ljkπ∗Π = −Πk k   (39)  

(no summation over l!) 

The function ( ) ( )t
l∗Π k is positive and even w.r.t. k that depends on 

( )1/ 22 2
1 2 1 2 3, , , andk k k k k+ . In the transversal isotropic system the averaged equations 

are: 

( ) ( ) ( ) ( )2t
l l lV jk Uπ∗= −Πk k k   (40)  

(no summation over l!) 

( ) ( ) ( ) ( )2t
l lm mV jk Uπ= −Βk k k   (41)  

where the components of the tensor ( )t are: 

( ) ( ) ( ) ( )t t
lm lm lδ ∗Β = Πk k   (42)  

It easy see that the tensor ( )t  is diagonal and ( ) ( ) ( ) ( ) ( ) ( )11 22 33
t t tΒ = Β ≠ Βk k k . In x -space in 

corresponding coordinate system we have non-local with unique kernels averaged 
equations 

( ) ( ) ( ) ( ) 3t
l l

l

U
V dy

y∗

∂
= − Π −

∂∫
y

x x y    , ( ) ( ) ( ) ( ) 3t
l lm

m

U
V B dy

y

∂
= − −

∂∫
y

x x y     ( 43)   

The averaged equation (40) is reversible and has the form 

( ) ( ) ( ) ( )2t
ml l mR V k Uπ= −k k k      (44)     

where ( ) ( ) ( ) ( )
1

t t
−

 =  R k B k is the diagonal transversal tensor of resistance. 

In x -space in corresponding coordinate system we have the non-local with unique kernel 
condition of the momentum balance 

( ) ( ) ( ) ( )3t
ml l

m

U
R V dy

y

∂
− = −

∂∫
x

x y y    (45)     

In summary, for any orthogonal coordinate systems in the case of isotropy the averaged 

equation is reversible and the tensors ( ) ( )i k and ( ) ( )iR k  are spherical. In the case of 

transversal isotropy if the orthogonal coordinate system is oriented so that one of the 
axes, for example, 3k  coincides with the axis of rotation, and the other two are oriented 



 11

arbitrarily, the averaged equation is reversible, the tensor ( ) ( )t � and ( ) ( )tR k are 

diagonal, and ( ) ( ) ( ) ( ) ( ) ( )11 22 33
t t tΒ = Β ≠ Βk k k . Finally, in the case of orthotropy, if the axes of 

the orthogonal coordinate system are the orthotropy axes, the averaged equation, too, is 

reversible and the tensor ( ) ( )o � and ( ) ( )oR k are diagonal. However, it is well to bear in 

mind that in each of the studied cases of symmetry, the components of the tensors 
( ) ( )kαΒ , where , ,i t oα = , remain invariant related to the superscript α . Therefore, in all 

three basic cases of symmetry ( , , )i t oα =  with a suitable orientation of the coordinate 
axes, the averaged equation is 

( ) ( ) ( ) ( ) ( )2l lm mV jk Uα α π= −Βk k k  (46) 

where 

( ) ( ) ( ) ( )lm lm m

αα δ ∗Β = Πk k  , ( ) ( ) ( ) ( )
1

ml ml mR α αδ
−

∗
 = Π k k  (47)  

(no summations assumed in (43) over subscript m!) 

The equation (42) is reversible and for any α  we have 

( ) ( ) ( ) ( )2ml l mR V jk Uα π= −k k k     (48)     

In x -space in corresponding coordinate system we have the non-local equations with 
unique kernels 

( ) ( ) ( ) ( ) ( ) 3
l lm

m

U
V B dy

y
α α ∂

= − −
∂∫

y
x x y , ( ) ( ) ( ) ( )3

ml l
m

U
R V dy

x
α ∂

− = −
∂∫

x
x y y    (49)    

Because ( ) ( )l
αΠ k  are imaginary and odd functions of vector k, the components of 

diagonal tensor ( ) ( )α �  are even and real functions. Now we write the component 
( ) ( )ll
αΒ k  in the following form: 

( ) ( ) ( ) ( ) ( ) ( )0ll ll llFα α αΒ = Βk k�   (50)  

Here ( ) ( )1 2 3, ,llF k k kα � � �  is a dimensionless function of the dimensionless variables l l lk k= ∆� , 

where l∆  are linear scales of the random field ( )� , for example, the correlation scales. 

Assuming the existence of a Taylor‘s expansion of the function ( ) ( )llF α k�  we can write: 

( ) ( ) ( ) ( )
( ) ( )

3 31 2 1 2

1 2 3

1 2 3 1 2 3
0 1 2 3

01
0

!

n
ll n nn n n n

ll ll
n n n n

F
k k k k

n k k k

α
α α

∞

= + + =

∂
Β = Β ∆ ∆ ∆

∂ ∂ ∂∑ � � �   (51)  

Substituting (51) into (46) and taking into account that all the odd derivatives of ( ) ( )llF α k�  

at 0=k�  are zero, we can write the expansions for the mean velocity ( ) ( )lV α x  in x-space: 
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 ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )31 2

31 231 2

1 2 3

22 2 2 2 1
1 2 3

2 22 222 2
0 1 2 31 2 3

1 0
0

2 ! 2

n nn n n n
ll

l ll n nn nnn n
n n n n l

F U
V B

x x x xk k kn

α
α α

π

+∞

= + + =

− ∆ ∆ ∆ ∂ ∂
= −

∂ ∂ ∂ ∂∂ ∂ ∂∑ x
x � � �   (52)  

                                                        

( ) ( ) ( ) ( )
( ) ( )

( )
( )31 2

31 2

1 2 3

22 2 2 1
1 2 3 , 1 2 3

22 2
0 1 2 3

, ,
0

2 !

nn n n
ll n

l ll nn n
n n n n l

n n n U
V

n x x x x

α
α α

+∞

= + + =

∆ ∆ ∆ Ι ∂
= −Β

∂ ∂ ∂ ∂∑ x
x              (53) 

where power moment of the dimensionless function ( ) ( ) ( ) ( )1
ll F llF T Fα α−  =  y k��  of the 

dimensionless variables /l l ly x= ∆  is ( ) ( ) ( ) ( )31 2 22 2 3
, 1 2 3 1 2 3, , nn n

ll n lln n n y y y F dyα αΙ = ∫ y� � � � � . 

It is evident that from equation (50) we have ( ) ( )0 1llF α =  and then ( ) ( ),0 0,0,0 1ll
αΙ = .         

The important question is: What is the behavior of the expansions (52) or (53) in the 
limiting case when 0l∆ →  that corresponds to the theory of homogenization and the 
concept of effective conductivity (see Bakhvalov and Panasenko, 1984; Zhikov et all, 
1993)? We should note that in the first terms of both expansions (n=0) the coefficients of 
the derivatives do not contain l∆  explicitly. By setting some restrictions to the source 

density ( )f x , the behavior the oldest derivatives of ( )U x can be sufficiently limited. All 

the other terms of these expansions tend to zero for 0l∆ → . In this case we have the 

averaged equation: 

( ) ( ) ( ) ( ) ( )
0l ll

l

U
V

x
α α ∂

= −Β
∂

x
x   (54)  

where ( ) ( )0ll
αΒ  are the diagonal components of the effective conductivity tensor. Notice 

that according to the theory of homogenization the tensor of the effective conductivity 
exists and is constant in all Euclidian space 3R . This is true if, for any limited domain 

3Q R⊂ , the source density function ( )f x  belongs to Sobolev‘s functional space 

( )1H Q− , or for example belongs to the square integrable functional space ( )2L Q , that is 

embedded in ( )1H Q−  space. Furthermore, if in any orthogonal coordinate system the 

tensor of the local random conductivity is symmetric and positive definite, the tensor of 
the effective conductivity is also symmetric and positive definite, so-called elliptic 
(Zhikov at all, 1993). The principal part of the expansions (52) and (53) corresponds with 
the theory of homogenization limit and can be used for computing the effective 
conductivity. In the cases of symmetry: isotropic ( )iα = , transversal isotropy ( )tα =  

and orthotropy ( )oα = for appropriate coordinate systems, the averaged equation has the 

form: 

( ) ( ) ( ) ( )Uα α
∗= − ∇V x B x  ,  ( ) ( ) ( )Uα α

∗ = −∇R V x x   (55)                           
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where the diagonal tensors of the effective conductivity ( ) ( ) ( )0ml ml ll
α αδ∗Β = Β  and effective 

resistvity ( ) ( ) ( )
1

0lm lm llR B αα δ
−

∗
 =    are 

( )

( ) ( )
( ) ( )

( ) ( )

11

22

33

0 0 0

0 0 0

0 0 0

α

α α

α
∗

 Β
 

=  Β 
  Β 

, ( )

( ) ( )
( ) ( )

( ) ( )

1

11

1

22

1

33

0 0 0

0 0 0

0 0 0

B

B

B

α

α α

α

−

−

∗

−

     
 

 =    
     

R          

 (56) 

Obviously the principal axes for all tensors ( ) ( )α � , ( )α
∗ and ( ) ( )αR k , ( )α

∗R  for any k , 

for each α  are identical to the respective coordinate axes. 

Up to this point we have studied the fields with some symmetry in special orthogonal 

coordinate systems. If the orthogonal coordinate axes lx ′  and lk ′  are oriented arbitrarily 

and lmβ  is the cosine of the angle between the axes lx′  and mx , the effective conductivity 

tensor in the new coordinate system is ( ) ( ) 1α α −
∗ ∗′ = . This tensor is symmetric and 

positive definite (elliptic). The averaged equations in the arbitrary coordinate system lx′  

has the forms ( ) ( ) ( ) ( )Uα α
∗′ ′ ′ ′= − ∇V x � , ( ) ( ) ( ) ( )Uα α

∗′ ′ = −∇R V x x . But what if the 

diagonal tensor ( )α
∗ is unknown? Or to put it more precisely, what if we know that there 

exists some symmetry but the orientation of the principal axes is not known nor the 
parameter α ? In this case we return to equation (20), which is actual for any 
stochastically homogeneous positive defined random fields ( )�  and study the vector 

( )l′ ′Π k  again and its formal Taylor‘s expansion about 0′ =k : 

( ) ( )
31 2

31 2

1 2 3

1 2 3
0 1 2 3

01

!

n
l nn n

l nn n
n n n n

k k k
n k k k

∞

= + + =

′∂ Π
′ ′ ′ ′ ′Π =

′ ′ ′∂ ∂ ∂∑k   (57)  

The component ( )l′ ′Π k  is an odd function of ′k  and therefore at point 0′ =k  all even 

derivatives are zero. Thus 

( ) ( )
( )

31 2

31 2

1 2 3

2 1

1 2 3
2 1 1 1 2 3

01

2 1 !

n
l nn n

l nn n
n n n n

k k k
n k k k

−∞

− = + + =

′∂ Π
′ ′ ′ ′ ′Π =

′ ′ ′− ∂ ∂ ∂∑k   (58)  

The linear part of this expansion on variable ′k  is: 

( ) ( )1 0l
l m

m

k
k

′∂Π
′ ′ ′Π =

′∂
k   (59)  

Inserting (53) in (20) we can write the linear approximation on ′k  for ( )lV ′ ′k : 
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( ) ( )1 01
2 ( )

2
l

l m
m

V jk U
j k

π
π

′ ∂Π 
′ ′= − − ′∂ 

k k   (60)  

By imposing some restrictions on the density ( )f x  as discussed earlier, the oldest terms 

of the expansions of ( )lV ′k  vanish in the homogenization limit. In this case we have the 

averaged equation: 

( ) ( )
l lm

m

U
V

x∗

′∂
′ ′ ′= −Β

′∂
x

x   (61)  

and in general case from (54) we find the real tensor of the effective conductivity, that is 
symmetric and positive definite 

( )01

2
l

lm
mj kπ∗

′∂Π
′Β = −

′∂
  (62)  

Thus, if we know the components ( )l′ ′Π k , we can find the effective conductivity tensor 

and by using the standard method we can find its real eigenvalues and the orthogonal 
eigenvectors. Transition to a new eigen orthogonal system that is associated with the 
eigenvectors and transformation of the tensor lm∗′Β to the new coordinates lead to a 

diagonal tensor ml∗Β , whose components are the eigenvalues for tensor lm∗′Β . As we 

mentioned earlier, for each α  in the new eigen coordinate system the tensor ( )lmΒ k  is 

diagonal with the following components: 

( ) ( )/ 2ll l ljkπΒ = −Πk k  , ( ) 0lmB =k , if  l m≠  (63)  

It is obvious that diagonal tensor ( )B k is unique and reversible. 

6. ALTERNATIVE APPROACH 

Majority of the works related to the present subject used a different approach. From 
the outset they wanted to find the relation between the averaged flow velocity field and 
the gradient of mean pressure (head). To examine the validity of this approach we return 
to the equation (20) again. To recast it to the form like the Darcy‘s Law we introduce 
some tensor ( )lmB k  that satisfies the equation: 

( ) ( )2l lm mB jkπΠ = −k k   (64)  

and after inserting (64) into (20) we have equation  

( ) ( ) ( )2l lm mV B jk U kπ= −k k                    (65)    

In x -space we have respectively 

( ) ( ) ( ) 3
l lm

m

U
V B dy

y

∂
= − −

∂∫
y

x x y                                                                                     (66)   
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  If we inserting (65) into (22), the condition of compatibility components vector ( )� , 

we obtain condition of compatability for components of tensor ( )lmB k  

( ) ( )24 1l lm mG k B kπ =k k   (67)  

It should be noted that last relationship we discussed that for any k the tensor ( )mlB k  is 

elliptic is not proven, although the equation doesn’t contradict it, because the factors –
components lk  and mk  are non-arbitrary. 

Assuming that tensor ( )B k  is nonsingular we can rewrite the equation (64) in the form 

( ) ( ) 2 jπ= −R k � �   , ( ) ( ) 1−
 =  R k B k                                                                   (68)    

Multiplay the first equation from (68) by ( )U k  and taking into account  (20) we can 

write the averaged equation 

( ) ( ) ( )2 j Uπ= −R k V k k k    (69) 

In x -space we have respectively the conservative averaged equation of momentum 
balance 

( ) ( ) ( )3dy U− − = −∇∫ R x y V x y x    (70) 

The definition of the Fourier transformation ( )� with the system (64) or ( )R k  with 

system (68) leads to three linear algebraic equations for each k and every of them contain 
three from nine unknown components ( )mlB k  or ( )lmR k  respectively. In the x -space 

this problem amounts to three differential equations with nine unknown nine function-
components ( )lmB x or three operator equations for unknown nine functions ( )lmR x . 

( ) ( )lm
l

m

B

x

∂
Π = −

∂
x

x   , ( ) ( ) 3
lm l

m

R dy
x

∂− Π = −
∂∫ x y y         (71) 

 

Both systems (64) and (68) and systems (71) are underdetermined and in general have  

unlimited sets of solutions. 

It is well known that ( )gB k  -the general solution (all infinite set of solutions) for a 

singular non-uniform system of linear algebraic equations can be presented as a sum of 
any individual solution of system ( )0B k  and ( )∗B k -which is any solution of the 

uniform system ( ) 0∗ =B k k  (The geometric sense of the uniform system is that all three 

vector-lines for the tensor ( )∗B k  are orthogonal to the vector k). Namely for this reason 

as indicated by Indelman and Abramovich, 1994, the use in (23) any of general solutions 
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( )gB k  with known vector ( )2 j Uπ k k , i.e., Fourier-transformation of ( )U∇ x , do not 

affect the computing ( )V k .  

When the tensors ( )gB k  are not singular, we can obtain the tensors 

( ) ( ) 1

g g

−
 =  R k B k -the general solutions of (68), which are not unique. In this case 

( )gR k  can be written as a sum of any individual solution ( )0R k  and ( )∗R k  - any 

solution of uniform system ( ) ( ) 0∗ =R k � . (The geometric sense of the uniform system  

is that all vector-lines of the tensor ( )∗R k  are orthogonal to the vector ( )� . If we 

select any individual solution ( )0B k , we can find ( ) ( ) 1

0 0

−
 =  R k B k . The 

corresponding tensor ( ) ( ) ( ) ( ) ( ) 1

0 0

−
∗ ∗ ∗ = − + R k R k B k B k B k does not affect the 

computation of ( )2 j Uπ k k  from equation (69) or ( )U∇ x  from equation (70). 

On the other hand, in the case of global symmetry as shown above, the number of 
unknown functions reduces to three or less and it is possible to find a unique solution, the 
diagonal tensor ( )� . Even if there is no reason to believe that the types of the global 

symmetry discussed above exist, the fact remains that if the stochastically homogeneous 
field of the local random conductivity tensor ( )mlσ x  is symmetric and elliptic, the tensor 

of the effective conductivity ( )0mlΒ  is symmetric and elliptic as well. In this general case 

the eigen orthogonal coordinate system exists in which the tensor ( )0  is diagonal. 

In general case it would appear reasonable to find in eigen coordinate system special 
solutions of system (64  ) and the uniform system as diagonal tensors for all k , that are 

simple and convenient for matching and identification. Then we select solutions ( ) 0=B k�  

for uniform system . In this case we find diagonal tensors ( )B k  and ( ) ( ) 1−
 =  R k B k   

( ) ( ) ( )/ 2 , 0ll l l lmB jk Bπ= −Π =k k k if l m≠   

( ) ( )2 /ll l lR jkπ= − Πk k  , ( ) 0lmR =k   if  l m≠         (72 )  

Note that if we use any orthogonal coordinate system lk ′′  that is different from the eigen 

system, and write: 

( ) ( ) ( )/ 2 , 0ll l l lmjk if l mπ′′ ′′ ′′ ′′Β = −Π Β = ≠k k k   (73)  

which is also a exact solution of the system defined by (64), we can see that the limit of  

( )ll ′′Β k  does not exist when 0′′ →k . In fact, inserting the linear part of expansion 

 ( )l ′′Π k  in the form of (53) into (61), we have: 
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( ) ( )1

2
l m

ll
m l

k

j k kπ
′′∂Π ′′′′Β =

′′ ′′∂
k

k   (74)  

(Here, the summation over m is implied!) Because
( )

0l

mk

′′∂Π
≠

′′∂
k

 for l m≠  and because 

the l′′k  coordinate system is not eigen, as 0′′ →k  the ( )lim ll ′′Β k  does not exist. 

Therefore in (72) we have solutions, which are exact, continuous and reversible with the 
formulated constrains. 

For finding the continuous exact and reversible tensor- solution of system (64) in any  

orthogonal coordinate system it should be from ( 62) compute the tensor of effective  

conductivity and find it eigenvalue and eigenvectors and the -matrix of transition from  

original coordinate system to eigen system. Then we need find the diagonal tensor of  

effective conductivity ( )0∗B in eigen system and from system (72) find components for 

diagonal tensor ( )B k . Now it remains to return to initial coordinate system using the 

matrix 1− . 

 As we showed in section 5 this method in case of global symmetry lead to exact, unique  

and reversible solution. The difference lies in the fact that in case of global symmetry the  

components of diagonal tensor dependent from invariants, which related to type of  

symmetry. It is evident that finding the solutions ( )B k and ( )R k we not assume that for 

any k these tensors by k 0≠  must be elliptic.  
Now let us compare the approaches discussed above and estimate their adequacy and 
utility for describing the averaged flow and studying appropriate direct and inverse 
problems. We shall call the approach presented in the present paper and the alternative 
approach with symbols P and A, respectively. 

1. In x-space the approach P leads to the equation that relates the mean velocity 
field with the mean pressure (head) field. But the approach A relates the mean 
velocity field with the gradient of mean pressure (head). 

2. These equations are non-local and contain convolutions. The kernels are a vector-

operator ( )�  in P and a tensor-operator ( )B x in A. 

3. Describing averaged flow in Fourier-space k leads to linear algebraic equations 
that contain the vector ( )�  in P and tensor ( )B k in A. 

4. Under P-approach for each conductivity field there exists a unique vector-
operator ( )�  or a vector ( )� . 
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5. Under A-approach for each conductivity field an unlimited set of operators ( )B x  

or tensors ( )B k  exists. Any of them can be used to compute the exact mean 

velocity vector. Actually by this operation one utilizes the P-approach. 

6. In P-approach to exactly and uniquely solve the inverse problem for finding the 
vector ( )� , it is sufficient to know a pair of fields, ( )U k  and ( )V k , which 

are consistent with the density ( )f k . 

7. In A-approach the inverse problem for finding tensor ( )B k  in general is ill-

posed. 

We again return to the averaged basic system (16)-(19) but now we eliminate the function 

( )f k  from equations (16) and (17). In this case we have the equation 

( ) ( ) ( )2 l ljG k V k Uπ =k k             (75) 

Multiplying the equation (75) by ( )2 mjkπ− for 1, 2,3m =  we can write 

( ) ( ) ( )2lm l mR V jk Uπ= −k k k
�

            (76) 

where the symmetric tensor ( )lmR k
�

is 

( ) ( )24lm l mR k k Gπ=k k
�

            (77) 

It is easy to see that for any k the tensor is singular because the determinant ( ) 0lmR =k
�

 

and the reciprocal tensor ( )1−R k
�

 does not exist. Generally speaking, the system (76) is 

not reversible. 

If we know the velocity field ( )V k , we can use the system (76) for computing 

( )2 mjk Uπ− k .  

In x -space we have the conservative non-local equation of moment balance 

( ) ( ) ( )3
lm l

m

U
R V dy

x

∂
− = −

∂∫
x

x y y
�

, ( ) ( )2

lm
l m

G
R

x x

∂
= −

∂ ∂
x

x
�

        (78) 

We can use the system (78) for computing ( )U∇ x . It is evident that for this action a 

knowledge of the Green‘s function ( )G x  is enough. On the contrary, in general it is 

impossible to find the filed ( )V x  from the system in (78). This exact result demonstrates 

again that A-approach have serious contradictions.    
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7. NON-STEADY TRANSIENT FLOW WITH SOURCES 

Let us consider the stochastic system of equations in a three-dimensional unbounded 
domain: 

( ) ( ), ( , )
,l

l

m t v t
f t

t x

∂ ∂+ =
∂ ∂

x x
x   (79)  

( ),m t =x ( ) ( ),u tα x x    (80)  

( ) ( ) ( ),u t= −∇r x v x x  (81)  

( )0, 0u t =x   (82)  

Here scalar function ( ) α x and tensor of ( )r x  are statistically homogeneous random 

fields of the storage capacity and resistence , respectively, and ( ),u tx  is the pressure. We 

introduce the random Green’s function ( ), , ,g t τx y , which is the solution to the system 

(79)-(82) for ( ) ( ) ( ),f t tδ δ τ= − −x x y . Let us introduce in the same way: 

( ) ( ), , , ,G t g tτ τ− − =x y x y   (83)  

( ) ( ) ( ), , , ,N t g tτ α τ− − =x y x x y  (84)  

( ) ( ) ( ), , ,
,l lj

j

g t
t

x

τ
τ σ

∂
Γ − − = −

∂
x y

x y x   (85)  

We consider FLT  and 1−
FLT - the direct and inverse Fourier-Laplace transforms and use the 

following designations: 

( ) ( ) ( ), , , , ,FL FL l FL lG T G N T N Tµ µ µ= = Γ = Γk k k   (86)  

and introduce the following scalar function and vector: 

( ) ( ) ( ) ( ) ( ) ( )1 1, , , , , , ,l lS k N k G k k k G kµ µ µ µ µ µ− −= Π = Γ   (87)  

It easy to show that ( ) ( ) ( )1, 2 , ,l lN ik Gµ µ π µ µ−+ Π =k k k . Thus, the averaged system is 

( ) ( ) ( ), ,
,l

l

M t V t
f t

t x

∂ ∂
+ =

∂ ∂
x x

x   (88)  

( ) ( ) ( )
0

3, , ,
t

t

M t S t U dy dτ τ τ= − −∫ ∫x x y y  (89)  

( ) ( ) ( )
0

3, , ,
t

l l

t

V t t U dy dτ τ τ= − Π − −∫ ∫x x y y   (90)  
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( )0, 0U t =x   (91)  

here ( ) ( ) ( ) ( ) ( ) ( ) ( )1, ( , ) , , , , , , , , ,l l FLU t u t V t v t M t m t S t T S µ−= = = =x x x x x x x k , 

and ( ) ( )1, ,FLt T µ−=� � . 

8. NON-REACTIVE SOLUTE TRANSPORT 

We consider a stochastic system of equations in a three dimensional unbounded domain: 

( ) ( ), ( , )
,l

l

a t q t
f t

t x

∂ ∂+ =
∂ ∂
x x

x   (92)  

( ) ( ) ( ), ,a t c tθ=x x x   (93)  

( ) ( ) ( ),
, ( , ) ,l l lj

j

c t
q t v t c t D

x

∂
= −

∂
x

x x x   (94)  

( )0, 0c t =x   (95)  

Here ( ) ( ) ( ), , , , ,c t tθx x q x D  are the concentration of solute, random porosity, solute flux 

and non-random dispersion tensor respectively. 

 We introduce the random Green‘s function ( ), , ,cg t τx y  which is the solution to the 

system (92)-(95) for ( ) ( ) ( ),f t tδ δ τ= − −x x y , and  relations: ( ),c cG t gτ− − =x y  ,  

( ) ( ), cH t gτ θ− − =x y x , ( ) ( ),l l cP t v gτ− − =x y x   (96)  

( ) ( ) ( ) ( ) ( )1 1, , , , , , , , ,c FL c FL l FL l l lG T G H T H P T P HG W PGµ µ µ θ µ µ− −= = = = =k k k k k�  

It easy to show that 12 l lik W Gµθ π −+ =� . Thus, the averaged system is: 

( ) ( ) ( ), ,
,l

l

A t Q t
f t

t x

∂ ∂
+ =

∂ ∂
x x

x   (97)  

( ) ( ) ( )
0

3, , ,
t

t

A t t C d y dθ τ τ τ= − −∫ ∫x x y y�   (98)  

( ) ( ) ( ) ( )
0

3 ,
, , ,

t

l l lj
jt

C x t
Q t W t C dy d D

x
τ τ τ

∂
= − − −

∂∫ ∫x x y y   (99)  

( )0, 0C t =x   (100)  

Here 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, , , , , , , , , , ,l l FL l FL lC t c t Q t q t t T W t T Wθ θ µ µ− −= = = =x x x x x k x k� �  (101)  
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9. SUMMARY 

We have described a general form of the exactly averaged equations of flow and transport 
in a stochastically homogeneous unbounded field with sources. We examined the validity 
of the averaged descriptions for the given fields and the generalized law for non-local 
models. A variant of the generalization for a given field with a unique kernel-vector and 
in some cases with a unique kernel-tensor was presented. We discussed the problem of 
uniqueness and the properties of the non-local averaged equations for three types of 
global symmetry: isotropic, transversal isotropic, and orthotropic. We analyzed the 
structure of non-local equations in the general case of stochastically homogeneous fields. 
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